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Abstract 
 
In this paper we present a new robust approach to 
extract moving objects in traffic scenes. It allows 
moving obstacles (cars, motorcycles, …) to be 
detected from a moving car without any a priori 
information about the shape or location of these 
moving objects. This technique is based on the 
concept of tracking color blobs in image sequences. 
 

1 Introduction 

Obstacle detection is one of the key functions in an 
autonomous driving vehicle. For vision based 
systems several approaches have been suggested to 
perform this task. Following [1], these approaches 
can be divided into three classes. 
 
One class uses a priori knowledge of the obstacle’s 
appearance in the 2-D image plane. They detect 
obstacles by localizing certain constellations of 
straight lines [2] or some symmetry features [2], [3] 
which describe the rear side of a car. Some of these 
algorithms work well in interstate (“Autobahn“) 
scenarios where the shape as well as the object 
classes of potential obstacles are strongly restricted. 
In highway or country road scenes, however, these 
algorithms will probably fail due to large variations 
in obstacle classes and their 2-D shapes. 
 
A second class of approaches uses stereo information 
[4], [5] to detect obstacles. It generates depth 
estimations from stereo correspondences of 
significant image structures such as corners or edges. 
In many cases the depth map is only sparsely filled 

with depth cues so that  the information is not 
sufficient to extract the complete obstacle from the 
image. 
 
The third class of the approaches detects obstacles 
based on motion information. A simple method which 
requires a stationary camera is the evaluation of the 
difference between new frames and the background 
image [6]. Most approaches, however, are based on 
optical flow. Here continuous and discrete methods, 
which will be explained in the next paragraphs, are 
distinguished. 
 
Continuous approaches usually generate a 
displacement vector for each pixel by computing a 
spatio-temporal gradient of the local intensity 
distribution. The existing approaches resort to a 
smoothness constraint [7] to make the 
underdetermined problem of optical flow 
computation solvable. This is why errors occur at 
discontinuities in the velocity field, which hinder 
motion segmentation. 
 
In contrast to continuous methods, discrete methods 
use image features such as corners [8] or local 
intensity minima and maxima [9] which are matched 
in adjacent images to obtain the displacement vectors. 
These displacement vectors are very precise. 
However, the resulting vector field is often not dense 
enough for object extraction. 
 
At this point the question arises as to how to obtain a 
precise displacement vector field which allows us to 
segment all moving objects of interest. Analogous to 
the discrete optical flow, where displacement vectors 
are generated by computing the motion of corner or 
edges of adjacent images, we generate displacement 
vectors for color blobs. The displacement vector field 



 

of the image is what we call color blob flow. Motion 
segmentation is now reduced to combining adjacent 
color blobs with similar motions. 
 
To compute the color blob flow, we perform 
following basic steps: 
 
• Color segmentation. 
• Connectivity analysis to get a symbolic 

description of the color blobs. 
• Tracking of the blobs on a symbolic level over a 

sequence of images to obtain the displacement 
vectors. 

 
Based on the color blob flow, we finally extract 
objects by combining color blobs with similar motion 
into motion segments. 

2 Color segmentation 

One suitable technique for real-time unsupervised 
color segmentation is clustering in color space. This 
technique determines a fixed number of reference 
vectors in such a way as to optimize the 
representation of the color distribution in the original 
image. Then the color vector of each point in the 
original image is replaced by ist nearest reference 
color vector in the sense of Euclidian distance. In 
choosing suitable cluster techniques, a trade-off must 
always be made between the quality of quantization 
on the one hand and the amount of computation on 
the other hand. The cluster technique published in 
[10] is a good trade-off, where realtime computation 
is important.  
 
As described above this method of “hard“ 
quantization can result in undesirable color speckles 
in the segmented image. This affect becomes 
increasingly noticeable as the number of clusters is 
increased. On the other hand if the number of clusters 
is too small, surfaces of different objects cannot be 
distinguished. In addition to these considerations, the 
color distribution in the original image must be 
considered when determining the number of clusters. 
As the number of significant colors in the image 
increases, the number of clusters must be increased in 
order to maintain fineness of segmentation. A 
clustering with sixteen reference colors has proven to 
be a practical value in images so far investigated. 

3 Connectivity analysis 

The color segmentation described above produces a 
color labeled image with a fixed number of (currently 
sixteen) different colors. After that, neighboring 
pixels must be grouped into areas of common color. 
To compute the color-connected components, we use 
a fast algorithm proposed in [11]. 
 
It is an efficient, sequential, one-pass algorithm for 
generating the border line chain for each component. 
Based on the border-line chain, it also computes 
region attributes such as the area, the centroid, and 
the bounding box of the color-connected component 
with little additional effort. 
 
Simultaneously the algorithm produces for each 
component a list of all adjacent components that are 
encountered during a walk around the border line, 
thus providing full topological information, which 
can be used for matching components in adjacent 
images. 

4 Generation of the color blob flow 

The decisive step in this technique is correctly 
matching corresponding color blobs in adjacent 
images. From the connectivity analysis described 
above, we have a number of attributes at our disposal 
which may be used in surface matching. Color is one 
similarity feature, which for the most part is 
independent of the motion of the objects and is thus 
especially well suited for matching. This one feature, 
however, is not sufficient. For additional features we 
used color blob area and aspect ratio of its bounding 
box. At this point we must note, however, that both 
area and aspect ratio are subject to change through 
occlusions and rotations. In these cases they can be 
used as matching criteria only if the image-to-image 
differences are relatively small, i.e. if the image frame 
rate is sufficiently large relative to the rate of motion 
in the objects in question. 
 
From two color blobs A and B, one in each of two 
adjacent images, we define the difference measure for 
each of these three features as follow: 
 
• color difference: 
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• relative surface difference: 
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• difference measure for the aspect ratio: 
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The total deviation is given as 
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where the wi are arbitrary weighting constants for the 
corresponding features. 
 
If 

 {D D XAB AX A X= ∈ −min ,Φ g g }d≤ , (5) 

 
then the representation of a surface in two adjacent 
images P and Q may be associated to each other, 
where Φ is a set of all color blobs in Q, g is the 
centroid vector of the surface, and d the maximum 
allowable Euclidean distance of the centroid of two 
color blobs to be associated with each other. 
 
How d is selected depends on the maximum 
movement to be detected in the image and also on the 
temporal and spatial resolution of the image in the 
sequence. Merging and occlusions of color blobs may 
make an association impossible. Tracking of  these 
areas in cases like this is halted and tracking of newly 
arising color blobs is initiated as necessary. In order 
to carry out the motion segmentation described 
below, the centroid motions of color blobs are 
computed over several images. 

5 Motion segmentation 

Two color blobs are considered to form one motion 
segment if they are adjacent to one another and have 
similar centroid motions. A necessary condition for 
this is that the period of observation and the path 
transversed be sufficiently long. The measure for 
similar motion is the linear correlation of the centroid 
coordinates over the period of observation of the two 
color blobs and is given by: 
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where g  is the mean of the centroid over the period 
of observation.  
 
Two color blobs are combined into one motion 
segment if 
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where θ is the set of all color blobs whose bounding 
boxes overlap with that of surface A. TAB is the period 
of observation of color blobs A and B, and p is the 
path length of the centroid motion during the period 
of observation. 
 
Constants with the subscript “min“ designate minimal 
values of the corresponding variables. 
 
The centroid motion of a motion segment is 
computed as the weighted mean of the centroid 
motions of the combined color blobs. Thus according 
to eqs. (6) and (7) an independent surface may be 
combined to an already existing motion segment. 

6 Results 

These experiments were carried out on traffic scenes 
on highways and interstates. Images were taken 
inside a test vehicle with a 3-chip  color movie 
camera, which was connected to a digital video 
recorder (Y:U:V = 4:2:2, 720 x 576 pixels, 25 
frames/sec.).  
 
In Fig. 1 we see a typical four-frame sequence which 
shows two cars. The car in the foreground has just 
passed our test vehicle. The vehicle behind, which is 
also on the left side, is traveling at a much higher 
speed than our test vehicle, i.e. it is moving away 
from us. The test vehicle was traveling at about 80 
km/h (50 mph). 
 
The first frame (a) shows the results of color 
clustering with overlapping contours. In the second 
frame (b) those color blobs which could be matched 



 

to corresponding color blobs in the first frame are 
shown with a dark outline. Those which could not be 
matched are shown with a light outline. In the next 
frame (c) we see how the individual color blobs have 
been combined into motion segments: The vehicle in 
the foreground has been detected. The second 
vehicle, in the background, is not detected until frame 
d, because it is further away from our test vehicle and 
therefore appears to be moving slowly. 
 
Fig. 2 shows a cross-road scene where a white car is 
passing the crossing. Fig. 2a shows the original 
image. Fig. 2b shows the contours that belong to the 
color blobs combined into the motion segment. The 
dark lines represent the tracks of the color blob 
centroids after a six-frame period of observation. 
 
As is shown in the last two figures the detection is 
independent of the particular view from the vehicle. 

7 Summary 

In our approach we presented a new method for 
isolating moving objects from a non-stationary 
background. The main idea is to track color blobs, 
generated by color space clustering, over an 
arbitrarily long image sequence. Motion segmentation 
is now reduced to combining adjacent color blobs 
with similar motions. The criteria for matching color 
blobs from two adjacent frames are color, area, 
position of centroid, and the aspect ratio of the 
bounding box. Two adjacent color blobs in a given 
frame are combined to a single motion segment 
whenever the correlation between the motions of the 
centroid points over several frames is sufficiently 
high.  
 
First experiments with traffic scenes taken with a 
non-stationary camera show that this technique 
produces relatively good results with both small and 
large object displacements. 
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Fig. 1: Obstacle detection in a traffic scene by tracking color blobs. Dark outline denote blobs which 
correspond to color blobs in the preceding frame. Color blobs which have been combined into a single motion 
segment are enclosed in yellow rectangles. 

 

 
 



 

 
Fig. 2: A cross-road scene where a white car is passing the crossing. a) shows the original image, b) shows the 
contours of the color blobs belonging to one motion segment. The dark lines represent the tracks of the color 
blob centroids after a six-frame period of observation. 
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